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A new formulation for the Ffowcs Williams–Hawkings quadrupole source is presented
for helicopter-rotor noise prediction. The formulation is a far-field approximation which
is exact for a far-field in-plane observer. The approximation is new and unique in that no
further approximation of the quadrupole source strength is made and integrands with 1/r2

and 1/r3 dependence are retained. This paper focuses on the development of a retarded-time
formulation in which time derivatives are analytically taken inside the integrals to avoid
unnecessary computational work when the observer is in motion (e.g., the wind tunnel
case). The new quadrupole formulation is similar to Farassat’s thickness and loading
formulation 1A. Because it is a retarded-time formulation, the current implementation is
intentionally limited to subsonic source motion to avoid singular integrals. Quadrupole
noise prediction is carried out in two parts: a preprocessing stage in which the previously
computed flow field is integrated in the direction normal to the rotor disk, and a noise
computation stage in which quadrupole surface integrals are evaluated for a particular
observer position. Preliminary predictions for hover and forward flight agree well with
experimental data. The method is robust and requires computer resources comparable to
thickness and loading noise prediction.

7 1997 Academic Press Limited

1. INTRODUCTION

High-speed impulsive (HSI) noise is a particularly intense and annoying noise generated
by helicopter rotors in high-speed forward flight. This HSI noise is closely associated with
the appearance of shocks and transonic flow around the advancing rotor blades. The
quadrupole sources in the Ffowcs Williams-Hawkings (FW–H) equation [1] account for
non-linearities in the vicinity of the rotor blade. These non-linearities are of two types,
which are described by Lighthill [2, 3]. First, the local speed of sound is not constant but
varies due to particle acceleration. Second, the finite particle velocity near the blade
influences the velocity of sound propagation. By inclusion of the quadrupole source, the
correct physics is mathematically simulated in the acoustic analogy. The quadrupole source
in the FW–H equation was identified by Yu et al. [4] as a significant contributor to
helicopter HSI noise. Hanson and Fink [5] also included the quadrupole source for
high-speed propeller noise prediction but found that it was not a significant noise source
in that application. Even though this early work demonstrated the importance of the
FW–H quadrupole, it has not been routinely included in rotor noise predictions because
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of the difficulty in predicting the source strength of the Lighthill stress tensor Tij and the
lack of a computationally efficient algorithm for computing the quadrupole noise.

In the past few years, the computation of the transonic aerodynamic field around rotor
blades has become feasible; hence, renewed interest in prediction of HSI noise has emerged.
Yu et al. [4] were the first to successfully utilize advances in CFD by integrating in the
direction normal to the rotor plane. The preintegration in the normal direction of the
quadrupole source, which is correct in the far field ahead of the helicopter, but ignores
retarded-time variations for out-of-plane observer positions, effectively transforms the
volume integration of the quadrupole into a surface integration. Yu et al. made two further
approximations in their quadrupole noise prediction: (1) they used an approximate value
for Trr and (2) they ignored terms in the integrand with 1/r2 and 1/r3 dependence. These
approximations were not necessary on either mathematical or numerical grounds. More
recently, Schultz and Splettstoesser [6], Schultz et al. [7], and Ianniello and De Bernardis
[8] have used techniques similar to that of Yu et al. with good results. Prieur [9] and Prieur
et al. [10] have developed a frequency domain method for computing the quadrupole noise
of hovering rotors that has yielded good results, but the frequency domain approach is
not as well suited to forward-flight computations.

Some attempts have been made to numerically integrate the entire volume around the
blade [7, 8], but the computations generally require computer resources comparable to
those required by unsteady three-dimensional computational fluid dynamics (CFD)
calculations—significantly more than that required for thickness and loading noise
predictions. Farassat [11] and his colleagues [12, 13] also tried to reduce the computational
effort required in computing HSI noise; they recognized that the appearance of a shock
wave coincides with the onset of HSI noise. By assuming that the shock is the dominant
contributor of quadrupole noise, the acoustic sources are mathematically confined to the
shock surface. When the shock-noise theory was implemented, the conclusion that the
shock noise was a dominant component of the quadrupole source was verified [13].
Nevertheless, the difficulty in accurately extracting the shock geometry, location, and
strength from CFD solutions, together with the fact that the shock noise alone did not
sufficiently characterize the total quadrupole source contribution, has postponed the
complete implementation of the theory.

The goal of this work is to utilize the far-field approximation to the FW–H
quadrupole given by the Brentner and Holland [14] and extend the formulation as
appropriate for moving observers. (The moving observer capability is essential for
forward-flight comparisons with wind-tunnel data, where both the rotor and the
observer move together in the acoustic computation.) This new formulation yields
efficient numerical prediction of HSI noise without resorting to unnecessary or ad hoc
simplifications of the FW–H quadrupole source term. The mathematical manipulations
used in this approach are rigorous and depend only on the far-field assumption, without
approximation of the source strength Tij . Numerical time differentiation of integrals is
avoided in the new formulation by performing the time differentiation analytically.
Preliminary calculations with this new formulation demonstrate the potential for
efficiency and robustness.

The acoustic analogy approach was chosen because of the substantial knowledge base
gained in the development and utilization of thickness and loading noise predictions, based
on the FW–H equation. Further, the fundamental far-field assumption, which is described
in the next section, leads to integrals of precisely the same form as current thickness and
loading noise calculations; hence, the existing numerical algorithms can be used directly.
Finally, the identification of individual noise components is a unique advantage of the
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acoustic analogy approach. This new formulation has been coded and is described in the
remainder of this paper. The numerical results are compared with experimental data for
both hover and forward-flight conditions.

2. FORMULATION DEVELOPMENT

The FW–H equation is the most general form of the Lighthill acoustic analogy and is
appropriate for predicting the noise generated by the complex motion of helicopter rotors.
In differential form, the FW–H equation is given by the following inhomogeneous wave
equation:

q2p'(x, t)= (1/1t)[r0vnd(f)]− (1/1xi )[lid(f)]+ (12/1xi 1xj )[TijH(f)], (1)

where p'(x, t) is the acoustic pressure and the three source terms on the right-hand side
are known as the thickness, loading, and quadrupole source terms, respectively. The
rotor-blade surface is defined by the equation f=0. Note in equation (1) that the thickness
and loading source terms are surface distributions of sources (indicated by the presence
of the Dirac delta function d(f)). Also note that the quadrupole source is a volume
distribution of sources (indicated by the Heaviside function H(f)). The FW–H equation
is valid in the entire unbounded space; hence, a formal solution may be obtained by using
the free-space Green’s function d(g)/4pr. In this paper, one is primarily concerned with
the contribution of the quadrupole source term.

Farassat and Brentner [15] have shown that after some manipulation of the formal
solution the noise contribution from the quadrupole may be expressed as

4pp'Q (x, t)=
1
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12

1t2 g
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−a gfq 0

Trr

r
dV dt+
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3Trr −Tii

r3 dV dt, (2)

where p'Q (x, t) is the acoustic pressure due to the quadrupole source. The quantity Trr is
the double contraction Tijr̂i r̂j , and r̂i are the components of the unit vector in the radiation
direction. In addition, dV is an element of the surface g=0, which is known as the
collapsing sphere; hence, equation (2) is known as a collapsing-sphere formulation.

2.1.  1

Equation (2) is the starting point for deriving the formulation developed by Brentner
and Holland [14]. To better illustrate the far-field approximation used in reference [14],
one first gives a geometric interpretation of the collapsing-sphere formulation. The
collapsing sphere is defined by the equation g= t− t+ r/c=0, where t and t are the
source and observer times, respectively, and r is the distance between the observer position
x and the source position y. Because the observer time t and the observer position x are
held fixed during the integration, the solution to g=0 can be interpreted as a sphere
centered on the observer x of radius r= =x− y=, which reduces, or collapses, as t

approaches t. A schematic is shown in Figure 1.
An integration over the entire collapsing-sphere surface is not necessary in the integrals

of equation (2) because the Lighthill stress tensor Tij vanishes away from the source region.
For an observer in the far field, the collapsing sphere can be locally approximated by a
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Figure 1. Schematic of collapsing sphere that intersects rotor blade.

cylinder, as shown in Figure 2, because the source strength reduces quickly in the
direction normal to the rotor blade. A further simplification in acoustic calculations
occurs if the observer is assumed to be in the rotor plane (precisely where HSI noise
has maximum directivity) because in this case integration in the direction normal to
the rotor plane can be done independently of the observer position. Yu et al. [4] were
the first to use this far-field approximation for the evaluation of helicopter rotor HSI
noise; however, the present work differs in that no additional approximation is made
to the quadrupole source strength (i.e., all terms of Tij are computed directly from CFD
data and the integral terms with 1/r2 and 1/r3 dependence are retained).

The integration over the approximate collapsing-sphere surface is carried out in two
stages. First, integration in the direction normal to the rotor disk is performed. This step
allows us to define the quadrupole source strength on the rotor disk as

Qij =gfq 0

Tij dz, (3)

where z is understood to be in the direction normal to the rotor disk and the z integration
is only done outside the rotor blade. The new tensor Qij is distributed on the rotor
disk plane and is expected to vanish sufficiently far ahead of the leading edge, behind
the trailing edge, and off the blade tip. By using relation (3), equation (2) can now be

Figure 2. Schematic of approximation to collapsing sphere in source region.
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written as

4pp'Q (x, t)=
1
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where f+ =0 represents the rotor disk plane, including the blade surface. The intersection
of the collapsing sphere with the rotor plane results in a curve for which the notation G

will be used. (See Figure 1.)
The integrals in equation (4) are in the same form as the collapsing-sphere formulation

for thickness and loading noise developed by Farassat [16]. For this reason, one can apply
the relation for reference [16]

c dG dt/sin u=dS/=1−Mr = (5)

to transform equation (4) from a collapsing-sphere formulation to a retarded-time
formulation. In equation (5), dS is an element of the source surface, and u is the angle
between the source surface normal and the radiation direction. When the observer is the
rotor plane, sin u=1. This transformation is exact.

The retarded-time formulation that results from the application of equation (5) to
equation (4), first presented in reference [14], is

4pp'Q (x, t)=
1
c2
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where Mr is the local Mach number of the source in the radiation direction and the
subscript ret indicates that the integrand is evaluated at the retarded time t− r/c. For
convenience, this equation is referred to as formulation Q1. (This notation parallels that
used by Farassat for the thickness and loading formulation 1.) Although formulation Q1
is approximate for observer positions not in the rotor plane, this formulation is still
expected to provide useful results for observers located at small angles above or below the
rotor plane. For larger angles, the quadrupole contribution is not expected to be
significant. In addition, because the far-field approximation only relies on the source
strength vanishing in the direction normal to the rotor, the observer can be relatively close
to the rotor (e.g., within 1 to 2 rotor radii).

Evaluation of the quadrupole noise can now be completed with substantially less
computational effort than a direct numerical evaluation of either equation (2) or its
retarded-time counterpart. Because the integrals in equation (6) are of the same form as
thickness and loading noise, formulation Q1 can be easily incorporated into existing
rotor-noise prediction codes such as WOPWOP [17]. Indeed, this formulation has been
incorporated into WOPWOP by Brentner and Holland [14]. Furthermore, the numerical



. . 92

insight, experience, robustness, and efficiency that has been realized in previous research
can now be applied directly to the approximate quadrupole prediction.

2.2.   1

One drawback of equation (6) is that numerical time differentiation of the first two
integrals is required. If the observer is stationary, then this requirement is not a problem
because the time history of the integrals can be easily differentiated numerically. If the
observer is moving with respect to the fluid, as in the case of a wind-tunnel test, the
situation becomes more complicated because the formulation requires the observer to be
stationary during the evaluation of the integrals. Predictions with a moving observer are
possible by adjusting the observer position at each time in the acoustic-pressure time
history; however, three evaluations of the integrals are needed to perform a second-order
central-difference approximation to the time derivatives at each observer time. These extra
integral evaluations are unnecessary if the time derivatives are taken inside the integrals
analytically.

Although the derivation of a formulation with the time derivatives inside the integrals
is not difficult, it is quite tedious. As a starting point, the integrals in equation (6) can be
labeled conveniently as I1, I2, and I3, respectively. Thus, equation (6) can be written as

4pp'Q (x, t)=
12

1t2 (I1)+
1

1t
(I2)+ I3. (7)

Now, to take the observer time derivatives inside the integrals one uses the relationship
given by Farassat and Succi [18]:

1/1t=x =[(1/1−Mr ) 1/1t=x]ret . (8)

This result is obtained by using the definition g= t− t+ r/c=0, given the fact that r is
a function of source time t through the source position variable y. Two applications of
relation (8) on I1 yield
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with K4 and K5 defined as

K4 = (1Mr /1t)/cr2(1−Mr )3 +2Mr /r3(1−Mr )2

and

K5 =1/cr2(1−Mr )2.

Terms K1–K5 depend only on the kinematics of the source motion and have been
determined by using relation (8) together with

1r/1t=−cMr . (11)

The values of K1–K5 can be evaluated by utilizing the definitions of the source-time
derivatives of Mr , which are written as

1Mr /1t=M� r +(c/r)(M2
r +M2) (12)

and

12Mr

1t2 =M� r +
3c
r

(M� r −MiM� i )+
3c2Mr

r2 (M2
r −M2)2. (13)

These relations follow directly both from the fact that 1y/1t= v= cM and from the
definition of r.

The derivation would be complete at this point if the time-dependent values of Qrr and
Qii were given as input for each point in the source region. To compute Qrr , however,
requires knowledge of the observer position, which is unrelated to the flow-field
calculations. For this reason and to take full advantage of the in-plane observer
assumption, one assumes that the input data do not require knowledge of the observer
position. Hence, the determination of the source-time derivatives of Qrr and Qii remains.
By recalling that

Qrr =Qijr̂i r̂j

and

1r̂i /1t= c(r̂iMr −Mi )/r

one can easily show that
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1Qii /1t=Q� ii . (16)

The notation used here is defined in the Appendix; however, the reader should understand
that the dot ( · ) implies source time differentiation on the variables shown with the dot.
A dot on the main variable does not imply differentiation of any of the associated vectors
implied by the subscripts. Subscripts other than i and j are a shorthand for the inner
product of the main quantity with the vector represented by the subscript.
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The final form, which is obtained by combining the previous results, becomes
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Equation (17), together with the definitions of Kr1, Kr2, and Kr3, will be referred to as
formulation Q1A and is the main result of this paper. The designation Q1A is intended
to parallel that of Farassat’s formulation 1A [17], in which the observer time derivative
is taken analytically inside the thickness and loading integrals. Formulation Q1A does not
require numerical time differentiation of the integrals and, as a retarded-time formulation,
is well suited for subsonic source motion. Aside from the problem geometry, only the
time-dependent value of Qij is required as input.

Note that the definition of the Lighthill stress tensor Tij , as well as that of Qij , requires
that the fluid velocities be specified in an inertial reference frame fixed to the undisturbed
medium. In this frame, the fluid velocities are perturbations about the stationary medium.
Often, CFD solutions are computed in a body-fixed reference frame; hence, the motion
of the body must be removed. Finally, remember that the vector M (and all related
quantities such as Mr ) is the source velocity rather than the fluid velocity.

The remainder of this paper will discuss the numerical implementation of equation (17)
and present some initial predictions.

3. NUMERICAL IMPLEMENTATION

The numerical calculation of the quadrupole noise has been divided into two stages: a
preprocessing stage in which the integration of the Lighthill stress tensor in the normal
direction, indicated in equation (3), is carried out, and an evaluation stage in which the
quadrupole contribution to the acoustic pressure specified in equation (17) is determined.
Both the preprocessor and the acoustic calculation are described in this section. More
information on the program details can be found in reference [14].

3.1. 

Although the evaluation of Qij can be performed independently of the observer position
and the retarded time, the preprocessor must read in the CFD solution, interpolate the
solution at the necessary quadrature locations, and then perform the numerical quadrature
in the direction normal to the rotor disk. The preprocessor needs knowledge of both the
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CFD grid topology and the solution format. In the initial implementation used for this
work, the interpolation of the CFD data is two dimensional and is done one radial station
at a time. For a given radial station, data are interpolated to quadrature points needed
for composite Gauss-Legendre integration, on lines normal to the rotor plane. The lines
are uniformly distributed in the chordwise direction. A two-dimensional linear
least-squares interpolation is used to interpolate the density, momentum, and energy at
each quadrature point. The Lighthill stress tensor Tij is evaluated with the interpolated
data. The value of Qij on f+ =0 is determined at each chordwise location before moving
to the next radial station. The entire process is repeated for each source time and is stored
as input to the acoustic calculation stage.

3.2.  

The quadrupole noise calculation indicated in equation (17) is carried out in a modified
version of WOPWOP [17], called WOPWOP+. The quadrupole noise calculation is
distinct from but parallels that of thickness and loading noise in the WOPWOP code, so
the discussion here will be brief. The WOPWOP+ code used in this paper is essentially
the same as that used in reference [14], with two exceptions. First, the code was modified
to use unsteady quadrupole source loading. Second, formulation Q1A was implemented
to enable forward-flight wind-tunnel predictions.

One unique aspect of the quadrupole noise calculation is that the integration surface
extends ahead of the leading edge, behind the trailing edge, and off the rotor-blade tip.
Because of this difference in the integration surface, the quadrupole noise calculation is
a separate subroutine in WOPWOP+. The panels that extend off the tip can be a problem
for a retarded-time formulation because rotating panels move supersonically if the radius
of rotation is great enough. Rather than implement specialized code logic to handle the
singular integrals caused by supersonic panel motion, only panels with subsonic speeds are
included in the present calculations.

Because the CFD solutions used in this work are output in a co-ordinate system that
is always aligned with the rotor blade, co-ordinate transformation are used to transform
Qij into the ground fixed frame used for all acoustic calculations. The numerical integration
over each panel is carried out for all observer times before proceeding to the next source
panel to reduce the retarded-time differences between subsequent evaluations. Unlike the
thickness and loading algorithm in WOPWOP, which allows the user to select the number
of computation panels, the quadrupole calculation in WOPWOP+ uses the computational
grid from the preprocessor without modification. Gauss-Legendre quadrature is used in
both the chordwise and radial directions for the numerical integration over each panel.
The retarded time is determined by using the modified false position method.

An adaptive numerical integration scheme is used to compute the contribution of the
quadrupole noise from each panel. The motivation for using an adaptive scheme is that,
although the quadrupole source strength may vary essentially linearly over a panel,
experience has shown that when the retarded time is properly taken into account a larger
number of quadrature points is needed if the effective area (i.e., the emission area DS, also
called the acoustic planform) of the panel is large. The panel area, panel velocity, and
observer position all determine the acoustic planform of the panel. When the acoustic
planform of the panel is large, more quadrature points are expected to be needed to
perform the integration over the panel because the integrated function may have more
variation. An adaptation parameter given by

N(Mr , A)AA/=1−Mr =, (18)

where Mr is the Mach number of the panel in the radiation direction and A is the physical
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Figure 3. U-1H model rotor operating in hover with MH =0·88; Q, experimental data; ——, predicted
acoustic pressure; ---, quadrupole component of predicted acoustic pressure.

area of the panel, is used to determine the number of quadrature points for a particular
panel; N is scaled such that 1ENE 20. As Mr approaches unity or if the area of the panel
is large, the adaptation parameter becomes large. Similarly, if Mr is small or the area of
the panel is small, then the adaptation parameter becomes small. For this paper, only the
number of points in the chordwise direction has been varied because little difference is
found when more points in the radial direction are used.

4. SAMPLE PREDICTIONS

In this section, two representative calculations are performed to demonstrate the new
formulation and to provide some indication of the efficiency and robustness of the new
quadrupole prediction method. Predicted acoustic-pressure time histories will be compared
with measured data for both hover and forward-flight conditions. (More comparisons
between predictions using this method and experimental data are presented in reference
[19].)

4.1. 

A model scale rotor test, conducted by Boxwell et al. [20] in 1978 and later repeated
by Purcell [21] in 1988, was selected for validation of the present theory and code. Both
experiments were designed specifically to measure HSI noise generated by a non-lifting
helicopter rotor in hover. The rotor was a one-seventh scale model of a UH-1H main
rotor with straight, untwisted blades. The model rotor utilized an NACA 0012 airfoil
section. The rotor radius R was 1·045 m with a chord of 7·62 cm. The model was run at
several high-speed hover conditions with low thrust. Comparisons of measured and
predicted acoustic pressure are made for an in-plane microphone located 3·09R from the
rotor hub.

For the hover noise calculation, an Euler solution reported by Baeder et al. [22] was
used as input. The Euler calculations were performed on a C-H grid; only the lower half
of the grid was used in the calculations by taking advantage of the symmetry of the
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problem. The Euler calculations required approximately 80 min of CPU time on a Cray
Y-MP. Details of the Euler calculations can be found in references [22] and [23].

In Figure 3, the predicted quadrupole component and the total acoustic pressure are
compared to the experimental data for a tip Mach number MH =0·88. For this case, the
flow around the UH-1H rotor blade is transonic but not delocalized; nevertheless, the
quadrupole contribution to the total signal is substantial. The good agreement between
the current prediction and the experimental data is representative of HSI noise predictions
with this new quadrupole formulation when the rotor speed is below the delocalization
Mach number. Although the result here is a new computation using formulation Q1A, this
result is indistinguishable from the previous calculation by Brentner and Holland [14],
which used formulation Q1. (Computations with formulation Q1 and Q1A were essentially
identical for all the cases in reference [14] and the implementation of formulation Q1A used
only slightly more CPU time.) For this preliminary calculation, approximately 6 s of CPU
time on a scientific workstation were required for the preprocessor execution, and an
additional 40 s were needed to run the combined thickness, loading, and quadrupole noise
prediction.

4.2.  

To demonstrate the forward-flight capability of the new formulation and code, a
comparison of predicted and measured results for a four-blade swept-tip rotor tested in
the Duits-Nederslandse Windtunnel (DNW) was made. For this comparison, a
microphone located in the rotor plane at a rotor azimuth of c=150° was utilized. The
model rotor was operated at an advance ratio m=0·32 and an advancing tip Mach number
MAT =0·933. The rotor is delocalized at this advance ratio, but the delocalization only
occurs over a relatively small range of rotor azimuth angles. The experiment is described
in the report by Visintainer et al. [24].

For this prediction, the full potential solver FPRBVI [25] was used to compute the
unsteady flow field around the rotor. For this developmental calculation, the FPRBVI
code was modified to store a solution file at every degree of rotor azimuth. These files were
then read by the preprocessor program to compute the time-dependent values of Qij .
Manipulation of the three-dimensional time-dependent data was computationally
demanding in terms of CPU time and storage. For this case, approximately 1100 CPU s
on a scientific workstation were required by the preprocessor. Both computer time (by
reducing input and output requirements) and storage could be reduced significantly if the
preprocessor was included as a data post-processing subroutine in the CFD code.

The results of the forward-flight prediction are shown in Figure 4. Again, the
experimental data are compared with the predicted acoustic pressure for an in-plane
microphone on the advancing side of the rotor; the quadrupole contribution is also shown
to indicate its relative magnitude. Although the CFD calculation used a rather coarse grid
(80 points in the wrap-around direction, 24 points in the spanwise direction, and 36 points
in the direction normal to the blade), the agreement is good. One possible reason for the
good agreement, even though this case is delocalized, is that the observer location is such
that the retarded position of the rotor corresponding to the peak negative acoustic pressure
does not contain any significant delocalized flow. It is likely that at other observer
locations the comparison may not be as good—especially if supersonically moving sources
contribute more significantly. (Other observer positions are shown in reference [19].) This
developmental calculation required approximately 190 CPU s on a scientific workstation.
Although further work is necessary to determine the sensitivity of the quadrupole
prediction to various input parameters and observer locations, it is the primary purpose
of this paper to present the formulation derivation.
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Figure 4. Contemporary design, four-blade model rotor operating in forward flight; m=0·32 and MAT =0·933;
Q, experimental data; ——, predicted acoustic pressure; ---, quadrupole component of predicted acoustic
pressure.

5. CONCLUDING REMARKS

The new far-field quadrupole noise formulation presented in this paper (formulation
Q1A) provides an efficient method for computing rotorcraft high-speed impulsive (HSI)
noise for both hovering and advancing rotor cases. The method is efficient in the sense
that the volume integration normally associated with the Ffowcs Williams–Hawkings
(FW–H) quadrupole has been reduced to a surface integration of the same form as
thickness and loading noise. Taking the time derivatives inside the integrals also improves
the efficiency of the numerical method by avoiding extra integral evaluations required by
numerical time differentiation. Even though the code has not been optimized and only
includes subsonically moving sources, the acoustic predictions are already relatively fast
for both hover and forward-flight predictions.

The new formulation is also robust. Brentner et al. [19] have demonstrated that the
far-field approximation works well for a range of operating conditions and observer
locations. For delocalized cases, supersonic quadrupole sources are ignored in
WOPWOP+ and the signal shape suffers. Nevertheless, even the delocalized predictions
are a significant improvement over neglecting the quadrupole completely. The efficiency
and robustness of this new quadrupole formulation make the acoustic analogy an
attractive option for the prediction of HSI noise and will help to maintain the usefulness
of rotor noise prediction codes based on the FW–H equation.
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APPENDIX: NOMENCLATURE

q2 wave operator
c sound speed in undisturbed medium
dV element of the collapsing-sphere surface
dS element of the rotor-blade surface
f=0 function that describes the rotor-blade surface
f+=0 surface described by union of rotor-blade surface and rotor disk
g=0 surface that describes the collapsing sphere, g= t− t+ r/c
H(f) Heaviside function
K1–5 groupings of kinematic quantities used in equations (9) and (10)
Kr1 integrand with 1/r dependence in equation (17)
Kr2 integrand with 1/r2 dependence in equation (17)
Kr3 integrand with 1/r3 dependence in equation (17)
li components of local force intensity that acts on the fluid
M local velocity vector of source normalized by c, with components Mi

M� i 1Mi/1t
Mr Mach number of source in radiation direction, Mir̂i

M� r M� ir̂i

M� r M� ir̂i

MAT advancing tip Mach number
MH hover tip Mach number
n̂ unit outward normal vector to surface, with components n̂i

p' acoustic pressure, p− p0

Qij quadrupole surface source tensor, symmetric
QMM QijMiMj

QMr QijMir̂j

QM� r QijM� ir̂j

Qrr Qijr̂ir̂j

Q� Mr Q� ijMir̂j

Q� rr Q� ijr̂ir̂j

Q� rr Q� ijr̂ir̂j

r distance between observer and source, r= =x− y=
r̂ unit vector in the radiation direction, with components r̂i

R rotor radii
t observer time
Tij Lighthill stress tensor, ruiuj +(p'− c2r')dij (inviscid form)
vn local normal velocity of source surface
x observer position vector, with components xi

y source position vector, with components yi

Greek symbols
G intersection of collapsing sphere g=0, and source surface f=0
d(f) Dirac delta function
u angle between n̂ and r̂
r0 density of undisturbed medium
r' density perturbation, r− r0

t source time

Subscript
ret quantity is evaluated at the retarded time, t= t− r/c


